first commit

This commit is contained in:
VC
2025-02-27 12:51:50 +01:00
commit f5e914e533
234 changed files with 11519 additions and 0 deletions

303
static/mpkdumper.ino Normal file
View File

@@ -0,0 +1,303 @@
/*
* Nintendo 64 Memory Card Dumper
* Written by Mortal (http://www.nintendojo.fr/)
* Thanks to :
* - Waffle (http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?action=viewprofile;username=Waffle) for the n64cmd function. See this Arduino forum thread for info: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1261980415
* - Micah Dowty <micah@navi.cx> for the CRC address table algorithm. See http://svn.navi.cx/misc/trunk/wasabi/devices/cube64/notes/addr_encoder.py
*
* Connect N64 controller +3.3V line to Arduino 3.3V line
* Connect N64 controller ground line to Arduino ground
* Connect N64 controller data line to an Arduino I/O pin with a 1K pull-up resistor to 3.3V line
*
* Set Arduino pin used for data line in the follow three #defines:
* Example for Arduino pin 9: N64_DATA_DDR = DDRB, N64_DATA_PIN = PINB, N64_DATA_PIN_NO = PINB1
*/
#define N64_DATA_DDR DDRB
#define N64_DATA_PIN PINB
#define N64_DATA_PIN_NO PINB1
#include <util/delay.h>
/* based off the 'N64/Gamecube controller to USB adapter' by Raphaël Assénat (http://www.raphnet.net/electronique/gc_n64_usb/index_en.php)
* modifications/improvements:
* - adjusted timing for 16 MHz
* - support writing variable length data
* - receive variable length data directly packed into destination buffer
*/
uint8_t n64cmd(uint8_t rxdata[], uint8_t rxlen, uint8_t txdata[], uint8_t txlen) {
uint8_t num = 0;
uint8_t oldSREG = SREG;
cli();
asm volatile(
"nextByte%=: \n"
" cpi %[txlen], 0 \n" // 1
" breq done%= \n" // 1
" dec %[txlen] \n" // 1
" ld r16, z+ \n" // 2
" ldi r17, 0x80 \n" // 1
"nextBit%=: \n"
" mov r18, r16 \n" // 1
" and r18, r17 \n" // 1
" breq send0%= \n" // 2
" nop \n"
// 1us low, 1us high
"send1%=: \n"
" sbi %[ddr], %[pinNo] \n" // 2
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop \n" // 2
" cbi %[ddr], %[pinNo] \n" // 2
" ldi r19, 11 \n" // 1
"lp1%=: dec r19 \n" // 1
" brne lp1%= \n" // 2
" lsr r17 \n" // 1
" breq nextByte%= \n" // 1
" nop\nnop\nnop\nnop \n" // 4
" nop \n" // 1
" rjmp nextBit%= \n" // 2
// 3us low, 1us high
"send0%=: sbi %[ddr], %[pinNo] \n" // 2
" ldi r19, 15 \n" // 1
"lp0%=: dec r19 \n" // 1
" brne lp0%= \n" // 2
" nop \n" // 1
" cbi %[ddr], %[pinNo] \n" // 2
" nop \n" // 1
" lsr r17 \n" // 1
" breq nextByte%= \n" // 1
" nop\nnop\nnop\nnop \n" // 4
" nop \n" // 1
" rjmp nextBit%= \n" // 2
// finished sending, sync up to the stop bit time
"done%=: \n"
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop\nnop \n" // 3
// stop bit
" sbi %[ddr], %[pinNo] \n" // 2
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop \n" // 2
" cbi %[ddr], %[pinNo] \n"
// stop now if there's nothing to receive
" cpi %[rxlen], 0 \n" // 1
" breq end%= \n" // 1
// receiving
" clr r18 \n" // 1 current byte
" ldi r17, 0x80 \n" // 1 current bit
"st%=: \n"
" ldi r16, 0xff \n" // 1 setup timeout
"waitFall%=: \n"
" dec r16 \n" // 1
" breq end%= \n" // 1
" sbic %[pin], %[pinNo] \n" // 2
" rjmp waitFall%= \n"
// wait about 2us to check the state
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop\nnop\nnop \n" // 4
" nop\nnop\nnop\nnop \n" // 4
" sbic %[pin], %[pinNo] \n" // 2
" or r18, r17 \n"
" lsr r17 \n" // 1
" brne nextRxBit%= \n" // 2
"nextRxByte%=: \n"
" st x+, r18 \n" // 2 store the value
" inc %[num] \n" // 1 increase number of received bytes
" cp %[rxlen], %[num] \n" // 1 check for finish
" breq end%= \n" // 1
" clr r18 \n" // 1
" ldi r17, 0x80 \n" // 1
"nextRxBit%=: \n"
" ldi r16, 0xff \n" // 1 setup timeout
"waitHigh%=: \n"
" dec r16 \n" // 1 decrement timeout
" breq end%= \n" // 1 handle timeout condition
" sbis %[pin], %[pinNo] \n" // 2
" rjmp waitHigh%= \n"
" rjmp st%= \n" // 2
"end%=: \n"
: [num] "=r"(num)
: [ddr] "I"(_SFR_IO_ADDR(N64_DATA_DDR)), [pin] "I"(_SFR_IO_ADDR(N64_DATA_PIN)), [pinNo] "I"(N64_DATA_PIN_NO),
[rxdata] "x"(rxdata), [rxlen] "r"(rxlen),
[txdata] "z"(txdata), [txlen] "r"(txlen), "0"(num)
: "r16", "r17", "r18", "r19"
);
SREG = oldSREG;
_delay_us(100); // some commands leave the controller unresponsive for a while
return num;
}
/*
* The N64 uses a CRC algorithm to address the memory card. Memory cards are using adress from 0x0000 to 0x7e80 on 32 octets boundaries (with 0x20 steps).
* Input :
* @encodedAddr = an array of 2 elements containing the upper and lower bytes of a memory card address system ;
* @hAddr = a tiny int containing the non-encoded upper byte of a memory card address ;
* @bAddr = a tiny int containing the non-encoded lower byte of a memory card address ;
* Output :
* - void
*/
void addrEncode (uint8_t* encodedAddr, uint8_t hAddr, uint8_t bAddr) {
// calculate a 16 bits (2 bytes) address from 2 * 8 bits upper and lower addresses
uint16_t addr = (hAddr<<8) + bAddr;
// default CRC table
uint8_t crc_table[11] = {0x15, 0x1F, 0x0B, 0x16, 0x19, 0x07, 0x0E, 0x1C, 0x0D, 0x1A, 0x01};
// calculating the CRC address
int _bit;
for (_bit = 0; _bit < 11; _bit++) {
if (addr & (1 << (_bit + 5))) {
addr ^= crc_table[_bit];
}
}
// modifying the encodedAddr passed in argument
encodedAddr[0] = addr >> 8;
encodedAddr[1] = addr & 0x00ff;
return;
}
/*
* Generates every possible adress for the N64 memory card (from 0x0000 to 0x8000) and prints it on the Serial output under the format :
* <address(2 bytes)>:<data(32 bytes)>
*/
void Backup () {
// variables initialization
int i, j, k;
uint8_t command[40];
uint8_t result[40];
// initializing the controller (perhaps useless)
command[0] = 0x03;
command[1] = 0x80;
command[2] = 0x01;
memset(command + 3, 0x80, 32);
n64cmd(result, 1, command, 35);
delay(100);
// the big loop !
// it generates adresses with 0x20 steps
for (i = 0x00; i < 0x80; i++) {
for (j = 0x00; j < 0x100; j += 0x20) {
char buffer[5];
uint8_t addr[2];
command[0] = 0x02; // read command
addrEncode (addr, i, j); // encode addr
command[1] = addr[0];
command[2] = addr[1];
// returns 32 bytes of data and 1 byte of CRC
// the data CRC is not yet implemented
uint8_t num = n64cmd(result, 33, command, 3);
sprintf(buffer, "%02x%02x", i, j);
Serial.print(buffer);
Serial.print(":");
for (k = 0; k < 32; k++) {
sprintf(buffer, "%02x", result[k]);
Serial.print(buffer);
}
Serial.print('\n');
delay(100);
}
}
// signaling the end of dump with a \n
Serial.print('\n');
}
/*
* Reads Serial until a \n char is encountered. Parse the line with the same format as above (<address(2 bytes)>:<data(32 bytes)>), put it in a tiny int array and write it on the right memory spot.
*/
void Restore () {
// variables initialization
int i;
uint8_t command[40];
uint8_t result[40];
// initializing the controller (perhaps useless)
command[0] = 0x03;
command[1] = 0x80;
command[2] = 0x01;
memset(command + 3, 0x80, 32);
n64cmd(result, 1, command, 35);
delay(100);
while(1) {
char buffer[100];
// re-initialize the buffer
memset(buffer, '\0', 100);
if(Serial.available() > 0) {
Serial.readBytesUntil('\n', buffer, 100);
if (strlen(buffer) <= 1) {
return;
}
command[0] = 0x03; // write command
char* poschar = buffer;
uint8_t addr[2], encodedAddr[2];
sscanf(poschar, "%02x", addr); // reads first byte
poschar +=2;
sscanf(poschar, "%02x", (addr + 1)); // reads second byte
addrEncode (encodedAddr, addr[0], addr[1]); // encode addr
// concat command with encodedAddr
command[1] = encodedAddr[0];
command[2] = encodedAddr[1];
// position on first data byte, erasing ':' char
poschar += 3;
// reads 32 byte of data and insert them into command vector
for (i = 0; i < 32; i++) {
sscanf(poschar, "%02x", (command + 3 + i));
poschar += 2;
}
n64cmd(result, 1, command, 35);
}
}
}
void setup() {
Serial.begin(115200);
}
void loop() {
char whattodo;
if(Serial.available() > 0) {
whattodo = Serial.read();
switch(whattodo) {
case 's':
Backup();
break;
case 'r' :
Restore();
break;
default:
Serial.println("Error: wrong key !");
}
}
}